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Abstract 

Background 

Organisms are able to anticipate changes in the daily environment with an internal 

oscillator know as the circadian clock.  Transcription is an important mechanism in 

maintaining these oscillations.  Here we explore, using whole genome tiling arrays, 

the extent of rhythmic expression patterns genome wide, with an unbiased analysis of 

coding and noncoding regions of the Arabidopsis genome. 

Results 

As in previous studies, we detected a circadian rhythm for approximately 25% of the 

protein coding genes in the genome.  With an unbiased interrogation of the genome, 

extensive rhythmic introns were detected predominantly in phase with adjacent 

rhythmic exons creating a transcript that if translated would be expected to produce a 

truncated protein.  In some cases such as the MYB transcription factor PHOSPATE 

STARVATION RESPONSE1, an intron was found to exhibit a circadian rhythm while 

the remainder of the transcript was otherwise arrhythmic.  In addition to several 

known non-coding transcripts including miRNA, trans-acting siRNA, and snoRNA, 

greater than one thousand intergenic regions were detected as circadian clock 

regulated, many of which have no predicted function, either coding or non-coding.  

Nearly 7% of the protein coding genes produced rhythmic antisense transcripts, often 

for genes whose sense strand was not similarly rhythmic. 

Conclusions 

This study revealed widespread circadian clock regulation of the Arabidopsis genome 

extending well beyond the protein coding transcripts measured to date.  This suggests 

a greater level of structural and temporal dynamics than previously known.  



Background  

Many organisms exhibit cyclic changes in physiology and behavior in accordance 

with predictable changes in their daily environment.  Namely, this is caused by shifts 

in temperature and light intensity owing to transitioning exposure to the sun caused by 

Earth’s rotation.  In addition to reacting directly to external stimuli, many organisms 

time their behavior in anticipation of periodic changes in the environment.  Such 

circadian rhythms are believed to be adaptive and indeed has been demonstrated in 

both prokaryotic and eukaryotic photosynthetic organisms [1, 2].  The endogenous 

timing mechanism known as circadian clocks is widespread across life and is 

primarily based on interlocking transcriptional feedback loops and regulated protein 

turnover [3]. 

 

Circadian clock regulation of transcription in plants appears to be extensive and many 

pathways governing processes such as photosynthesis, cold acclimation, and cell wall 

dynamics, for example, exhibit circadian rhythms at multiple levels [4-6].  Estimates 

of the extent of circadian clock regulation are primarily derived from the use of high-

density oligonucleotide arrays with features that mostly correspond to the 3’ end of 

genes annotated as protein coding (e.g. [4-6]).  Recently, there has been a flourish of 

transcript mapping using genome tiling arrays capable of measuring nearly all 

nonredundant sequences in the genome, far beyond the capability of previous studies 

[7-9].  In excess of the number of protein coding transcripts, noncoding RNAs 

(ncRNA), which include natural antisense transcripts (NAT), appear to be a large 

component of the remarkably complex transcriptome in all organisms examined to 

date: Arabidopsis, C. elegans, Chlamydomonas, Drosophila, E. coli, human, rice, and 

yeast [10-24].  Aside from hybridization based detection systems, sequencing 



approaches such as serial analysis of gene expression (SAGE), massively parallel 

signature sequencing (MPSS), and directional cDNA cloning and sequencing have 

confirmed widespread existence of these transcripts in plants and other species [25-

27].  It is not difficult to fathom the existence of numerous and sundry ncRNA.  There 

are several classes of long studied ncRNA such as transfer (tRNA), ribosomal 

(rRNA), and small nuclear (snRNA) in addition to the more recently discovered small 

nucleolar (snoRNA), micro (miRNA), and short interfering RNA (siRNA) [28].  

Nevertheless, the existence of these specific forms does not explain the excessive 

ncRNA measured by tiling arrays.  This suggests a complex RNA regulatory network 

akin to that revealed through the study of X chromosome silencing, for example [29]. 

 

Tiling array experiments have done little to characterize large-scale transcriptional 

activity beyond to say it exists.  Here, we explore circadian clock controlled 

transcriptional regulation in Arabidopsis using high-density oligonucleotide tiling 

arrays.  In addition to protein coding genes and intergenic regions, we measured 

circadian regulation of introns, as well as clock-regulated NATs. 

 

Results and Discussion 

Tiling array characteristics and performance.  The Affymetrix Arabidopsis tiling 

arrays each contain 1,683,620 unique 25-mer oligonucleotide features.  One array is 

comprised of the forward or Watson strand and the other the reverse or Crick strand.  

The Arabidopsis Information Resource Version 7 (TAIR7) genome annotation 

includes a total of 32,041 genes, among them, 27,029 are considered to be protein 

coding [30].  Nearly 95% (25,677) of the protein coding genes have at least two 



corresponding exon array features as do 74% (2,863) of the transposons and 

pseudogenes (Table 1).  Due to their small size and sequence redundancy within gene 

families; only 202 of the 1,123 annotated ncRNA have at least two corresponding 

array features of those 62 are miRNA.  Labeled cRNA was prepared from twelve 

samples collected during a two day circadian time course at 4hr resolution. Samples 

were independently hybridized to each array as previously described [4].  Spectral 

analysis was used to test for a circadian rhythm in the hybridization intensity of each 

feature across the two day time course.  Rather than treat each feature as an 

independent experiment, a sliding window approach was used to exploit the redundant 

signal in neighboring features (see Materials and Methods).  As a test of the 

capabilities of the tiling arrays, RNA time course, and spectral analysis, we 

specifically looked at the expression of fourteen circadian clock associated genes: 

CIRCADIAN CLOCK ASSOCIATED1 (CCA1), LATE ELONGATED HYPOCOTYL 

(LHY), GIGANTEA (GI), TIMING OF CAB2 EXPRESSION1 (TOC1), PSEUDO 

RESPONSE REGULATOR3, 5, 7, and 9 (PRR3, 5, 7, and 9), LOV KELCH 

PROTEIN2 (LKP2), LUX ARRHYTHMO (LUX), EARLY FLOWERING3 and 4 (ELF3 

and ELF4), FLAVIN-BINDING, KELCH REPEAT, F-BOX 1 (FKF1) and ZEITLUPE 

(ZTL) (Fig 1-4) [31].  Here we plot the results of the spectral analysis of the 

expression level time course for individual features on the array.  Each of these genes 

had at least two exon features that satisfied the p < 0.005 cut off as well as a phase 

[see Additional data files #1 and #2] similar to that reported previously.  Two clock 

genes with weak rhythms at the transcriptional level, LKP2 [32] and ZTL, exhibited 

the expected behavior (Fig 3).  A clock gene that does not cycle at the transcriptional 

level, TIME FOR COFFEE [33], was similarly found not to exhibit circadian 

regulation (Fig 4C).  In addition to these consistencies we compared the tiling array 



dataset with a similarly produced two-day time course [GEO:GSE8365, [34] 

hybridized to the Affymetrix ATH1 gene array.  The spectral analysis for each gene 

on the gene array was plotted against all of the features for that transcript on the tilling 

array.  While comparison between these platforms should be interpreted cautiously, 

there was strong accord between data sets for significance in rhythmicity as well as 

circadian phase [see Additional data file #3].  At the genome level, 24.4% of the 

protein coding genes were circadian clock regulated (<0.05% FDR), that is to say, the 

transcript exhibited a rhythmic 24hr period over a two-day time course [see Table S3 

in Additional data file #4].  This result is well within the range of recent reports [35, 

36] that used the Arabidopsis ATH1 array.  In these study, greater than 75% of the 

protein coding transcripts assayed were found to cycle when driven by various 

conditions of photocycles and/or thermocycles or under constant conditions.  While 

all phases were represented, there was an increase in frequency of genes with peak 

expression just prior to dawn and dusk suggesting an important role of the circadian 

clock in anticipating the transitions between day and night (Fig 6A).  These data can 

also be queried and visualized at the Arabidopsis Cyclome Expression Database [37]. 

 

Circadian clock regulation of introns.  Unlike the design of the Arabidopsis 

ATGenome1 and ATH1 arrays, where features quantify hybridization of the sense 

strand transcript of the protein coding regions, AtTILE1 features also correspond to 

597,856 intergenic and 301,733 intronic loci on each strand.  Interestingly, these 

features capably detected 499 transcripts with rhythmic introns [Table S4 in 

Additional data file #4].  In cases where cycling introns were observed in genes with 

cycling exons (n=213), the introns frequently had a similar phase to the coding 

regions of the transcript (Fig 6B).  Unlike an alternatively spliced exon, introns are 



nonsense sequences and their inclusion tends to introduce a translational stop as in the 

examples of ELF3 (Fig 1B) and CONSTANS LIKE2 (COL2) (Fig 4D).  Transcripts of 

these genes were transcriptionally verified for an exon and intron using quantitative 

PCR of reverse transcriptase amplified cDNA (QRT-PCR) of an experimentally 

independent time course [see Additional data file #5].  For both genes (ELF3 

[GenBank:AY136385 and Y11994]; COL2 [GenBank:L81119 and L81120]), a cDNA 

of both splice forms, with and without the detected cycling intron, has been captured 

and sequenced.  By assaying RNA from pooled whole seedlings with an 

oligonucleotide array platform, it is not clear if both variants occur in the same cell or 

tissue types or if they are simply immature transcripts sampled prior to complete 

processing.  Hybridization intensities of individual features do suggest the intron 

variant of COL2, for example, is present in appreciable quantities [see Additional data 

file #5].  If so, this presents somewhat of a conundrum.  For example, mutations in 

ELF3 can cause a rather dramatic effect on flowering time and circadian rhythms in 

Arabidopsis [38] and curiously, inclusion of the second intron as we observed could 

produce a protein similar to that of the elf3-1 mutant [39].  In a number of instances, 

introns exhibited a phase differing from the coding region of the transcript by greater 

than four hours (Fig 6B). 

 

Quite unexpected, 286 genes that showed no evidence of rhythmic expression of 

coding regions contained an intron exhibiting circadian rhythmcity [see Table S5 

Additional data file #4].  This form of alternative splicing or “gated intron inclusion” 

could result in altered protein function that occurs at a specific time of day.  For 

example, the fifth intron of PHOSPHATE STARVATION RESPONSE1 (PSR1, Fig 

5A) cycles with peak expression in the late afternoon and this was confirmed by 



QRT-PCR using a second experimental time course [see Additional data file #5].  

Under these circumstances, the complete message was constitutively or at least 

arrhythmically expressed.  Perhaps, the point of peak rhythmic expression of the 

intron is a circadian clock regulated occurrence of intron inclusion where the 

transcribed protein is truncated.  This phenomenon is not difficult to reconcile with 

what is known about the Arabidopsis genome. Among the protein coding transcripts, 

nearly 15% have an annotated splice variant [30], which is appreciably smaller than 

that of mammalian genomes [40, 41].  In addition to the distinction in overall 

proportion of splice variant genes, intron inclusion is a lesser form in mammals but 

the most prevalent in Arabidopsis with at least 8% of protein coding genes exhibiting 

intron inclusion [42, 43].  Considering that the vast proportion of the genome is 

diurnally and circadian regulated, including many RNA binding proteins, the 

occurrence of circadian gated intron inclusion is not inexplicable [35, 44].  However, 

the exact mechanism for any one of these events and their biological relevance is not 

well understood.  In a number of instances, introns were observed exhibiting a peak 

phase of expression four to twelve hours different from the coding region of a 

transcript (Fig 6B). 

 

Circadian clock regulation of ncRNA.  Certain ncRNA known as miRNA fold back 

and form imperfect dsRNA that are processed by the Dicer and RNaseIII-like families 

to create ~22bp fragments [45].  In plants, transcripts with exact homology to the 

mature miRNA are targeted for post-transcriptional regulation.  Many miRNA are 

responsible for silencing transcription factors associated with growth and 

development and their expression is often tightly regulated both developmentally and 

spatially [46-48].  Although the AtTILE1 arrays are capable of distinguishing only a 



fairly small proportion of the 114 annotated miRNA in the Arabidopsis genome, 

several were found to cycle in one week old seedlings.   Our protocol amplified and is 

assumed to detect polyadenylated transcripts only, and in the case of the miRNA loci, 

some relatively large cycling premature transcripts were observed.  Two miRNA in 

particular, MIR160B and MIR167D [see Additional data file #5] target several 

members of the AUXIN RESPONSE FACTOR (ARF) family which bind to the auxin 

response elements (TGTCTC) in promoters of early auxin response genes [49].  

MIR160B targets ARF10, ARF16, and ARF17 which are all believed to be involved in 

germination and post-germination stages of growth [50, 51].  MIR167D targets ARF6 

and ARF8 which are involved in male and female reproductive development [51, 52].  

Two other clearly cycling miRNA are MIR158A with no known target and MIR157A 

which targets several members of the SQUAMOSA BINDING PROTEIN family: 

SPL3, SPL4, and SPL5.  Interestingly, the target SPLs and ARFs were not found to be 

circadian regulated.  We speculate that for such a pattern to occur, the target must be 

expressed constitutively and only in cell types with rhythmic target miRNA 

expression.  Otherwise, the signal from cells where miRNA are not expressed may 

obscure a rhythmic signal caused by miRNA expression in other cells.  Additionally, 

the relationship between target degradation and miRNA concentration would need to 

be somewhat linear; where as in practice it is more qualitative, requiring a certain 

threshold of accumulation prior to detectable degradation [53].  Therefore, the 

absence of a reciprocal expression pattern of the target transcripts does not rule out a 

specific function behind the circadian behavior of the miRNA. 

 

The well-described complexity of AFR transcript regulation is also influenced from 

trans-acting small interfering RNA (ta-siRNA), namely TAS3 [54-57].  Dicer 



processing of the primary TAS transcripts is triggered by miRNA-guided cleavage.  In 

the case of TAS3, MIR390 directed cleavage results in a 21bp dsRNA with 

posttranscriptional properties similar to miRNA [58].  While both MIR390A 

(At2g38325) and MIR390B (At5g58465) were reliably detected by the AtTILE1 

arrays, neither was found to exhibit a circadian rhythm [see Additional data files #1 

and #2].  On the other hand, the abundance of the primary TAS3 transcript is clearly 

circadian clock regulated, a pattern confirmed in two independent time courses [see 

Additional data file #5].  While transcript abundance of TAS3 and possibly TAS2 [see 

Additional data files #1 and #2] is clearly clock regulated, a functional ncRNA will 

only arise with the coincidence of the initiating miRNA.  This scenario explains a 

mechanism for very specific regulation of ARF transcript degradation possibly 

dependent on both internal and external cues [59].    

 

While few small nucleolar RNAs (snoRNAs) were detected by the arrays, one such 

ncRNA, snoRNA77 (At5g10572), cycled with a peak expression in the late evening 

(data not shown).  This class of snoRNA is believed to target certain transcripts for 

chemical modification, namely 2′-O-methylation [60].  Circadian clock regulation of 

these transcripts suggests that this form of transcriptional modification could be, in 

part, circadian regulated as well.  However, behavior of this transcript was arrhythmic 

when measured using QRT-PCR of two independent time courses (data not shown).  

The irreproducibility could be due to a false positive in the tilling array data and 

analysis, QRT-PCR data, or due to experimental differences between time courses. 

 

Circadian clock regulation of natural antisense transcripts.  Perhaps one of the 

more uniquely revealing aspects of a genome tiling array is the ability to differentiate 



probe strandedness.  Indeed, rhythmic natural antisense transcripts (NATs) were 

detected for 7% (n=1,712) of the protein coding genes detected by the arrays (Table 

S4).  Among them were the core clock associated MYB transcription factors LHY and 

CCA1, and the PSEUDO RESPONSE REGULATORS (TOC1, PRR3, 5, 7, and 9) (Fig 

1-4).  On the other hand, no NATs were observed for GI, LUX, or ELF3.  Among the 

aforementioned rhythmic NATs, all of them exhibited a similar time of peak 

expression as the sense transcript.  Overall, the majority of the rhythmic NATs 

overlapped with circadian regulated sense transcripts with a similar phase of 

expression (Fig 6D).  The expected outcome of NAT expression based on functional 

characterization and expression pattern of the Neurospora core clock gene 

FREQUENCY [61] is inverse expression of the complementary transcript.  This leaves 

in question the potential role of the circadian regulated NATs we detected with 

similar expression to their corresponding sense transcripts.  The use of reverse 

transcriptase to generate the array probe has been shown to generate artifacts in the 

form of fragments antisense to coding sequences presumably derived from self 

priming or mispriming by other fragments[62, 63].  This bias, if real, would have to 

be sequence specific, or it would be ubiquitous across genes, which we do not see.  

Considering splice junctions are not palindromic, NATs spliced in a similar fashion to 

sense transcripts, and exhibiting nearly identical expression patterns, are generally 

artifacts.  At the same time, extensive anti-correlated expression of cis-NAT pairs 

resulting in subsequent siRNA has been observed in Arabidopsis, but this is only a 

trend and many do not adhere to this rule [27, 64, 65].  As with miRNA, observations 

at the whole genome level without genetic experimentation might not resolve a 

complex relationship between sense and antisense pairs.  However, consistent with 

the detection of rhythmic introns in otherwise arrhythmic genes, we detected 813 



instances of rhythmic cis-NATs with an arrhythmic corresponding sense strand 

transcript [see Tables S6 in Additional data file #4].  In these examples, there was 

obviously no anti-correlated sense strand pattern resolved, and the absence of a 

circadian-regulated coding transcript argues against the NATs as experimental 

artifacts, as does the nearly 8,000 NATs detected by Stolc et al. [66] that exhibited 

greater hybridization intensity on the antisense strand than the sense strand in 

Arabidopsis cell cultures.  The overall phase distribution of the NATs, regardless of 

sense strand cycling, was clearly distinct from the coding transcript phase distribution 

mentioned earlier (Fig 6A).  Rather than an overrepresentation of rhythmic transcripts 

just prior to dawn and dusk, NATs as with rhythmic sense strand introns (Fig 6C), are 

enriched towards the morning.   

 

Circadian clock regulation of intergenic regions.  Numerous regions (n=1,052) not 

annotated as expressed portions of the genome in TAIR7 exhibited circadian behavior 

[see Tables S7 in Additional data file #4].  These areas consist of several different 

classes.  The first are simple annotation errors, where the array hybridization implies a 

larger transcript than that found in the annotation.  Criteria to identify this type is that 

they are immediately adjacent features to the annotated transcript with a similar phase 

of expression such as PRR3 and FKF1 which have three and two cycling intergenic 

features that would extend the annotation of the 3’ end by at least 147bp each (Fig 2D 

and 4A).   A second class of cycling intergenic regions has supportive expressed 

sequence tag (EST) evidence that is not incorporated into the formal annotation.  

These include protein coding transcripts as well as ncRNAs [67].  Perhaps the most 

interesting regions are those with scant or no support from ESTs or previous tiling 

array efforts [14, 66].  For example, a region of at least 350bp on chromosome 5 



(6,839,029 bp to 6,839,383 bp) is rhythmic, and a coding or functional non-coding 

transcript is not evident (Fig 5D). 

 

Conclusions 

Numerous forms of ncRNA are well known to be an integral part of genomes, yet 

many of these transcripts, described here and by others, detected by tiling arrays in 

several organisms fail to qualify as a functionally characterized ncRNA type [8].  

Genome-wide transcription studies have forced a new paradigm of genome 

organization where most of the genome is expressed, yet often with an unknown 

function (e.g., [68]).  In addition to documenting the existence of such transcripts, we 

have described a very specific rhythmic expression behaviour that is likely controlled 

by only a small number of genes making up the Arabidopsis circadian clock [31].  

The patterns within this study alone strongly suggest these are meaningful expression 

patterns.  For example, antisense transcripts often exhibited very different expression 

patterns from sense strand transcripts.  Also, genes classified as 

pseudogenes/transposons are severely underrepresented among circadian regulated 

transcripts, both on sense and antisense strands.  Thus, mechanisms of clock 

regulation were either not maintained with loss of gene function or did not 

spontaneously occur suggesting that the novel rhythmic transcription described within 

is functional. 

 

 



Materials and methods 

Plant materials and sample preparation 

Seedlings of Arabidopsis thaliana accession Col-0 were grown on MS media 

(supplemented with 2% D-glucose and solidified with 1% agar) 7 days in 12 h 

light:12 h dark cycles under white fluorescent bulbs at 100 µmol m-2 s-1 before release 

to constant light and temperature. Samples were collected every 4 h beginning at the 

time of lights on, ZT0. RNA was extracted by using the Qiagen (Valencia, CA) 

RNeasy Plant Mini Kit.  Labeled cRNA probe was synthesized according to standard 

Affymetrix (Santa Clara, CA) protocol.  

 

Array design and annotation 

We used high-density oligonucleotide GeneChip® Arabidopsis Tiling 1.0R and 1.0F 

arrays.  Each array is comprised of more than 3.2 million 25bp perfect match features 

along with corresponding mismatch features of either the Watson (1.0F) or Crick 

(1.0R) sequence stand.  On average, each probe was spaced every 35bp of genome 

sequence.  As previously described [69] perfect match probes from Arabidopsis Tiling 

1.0F array were megablasted against Arabidopsis genome release version 7 (TAIR7) 

[30] including mitochondria and chloroplast sequences with word size >=8 and E-

value <= 0.01.  Single perfect matches, without a 2nd partial match of >18/25 bp were 

selected giving a total of 1,683,620 unique features.  These were mapped to annotated 

mRNAs as intron, exon, inter-genic region, or flanking probes which span an 

annotated boundary.  Background correction and quantile normalization was 

performed separately on the forward and reverse strand arrays using the affy 



Bioconductor package in R according to Bolstad et al. [70]. The Affymetrix AtTILE1 

Genechip data (.CEL files) have been deposited at The Gene Expression Omnibus 

[GEO:GSE13814]. 

 

Fourier/spectral analysis 

Hybridization efficiencies of oligonucleotide probes on tiling arrays vary considerably 

and some probes tend to be unresponsive.  Thus, to avoid spurious decrease of signal 

in the spectral analysis from poorly responsive probes, we filtered out probes which 

are lowly expressed (mean < 3) and furthermore show very little variation (standard 

deviation < 0.25) across the time series leaving a total of 1,609,258 features between 

both the forward and reverse strand arrays.  The twelve measurements for each probes 

were standardized and Fourier analysis was used to evaluate the RNA expression 

pattern over the two-day time course [71].  To exploit redundancy of features we 

grouped all probes for the same exon based on the TAIR7 genome annotation [30], or 

applied 200 bp windows centered on each intronic or intergenic probe position while 

stopping at exon boundaries.  We then computed the 24-h spectral power F24 from 

the average of the standardized probes within a group, following Wijnen et al. [71]. 

To assess the significance of these F24 scores, we built empirical null distributions 

that take into account the number of probes (weight) that went into the calculation of 

the spectral power. The family of null distributions was calibrated from the 

distribution of scores of all probes annotated as intergenic. We parametrized these 

distributions as exponential functions which gave excellent fits [see Additional data 

file #6]. The p-values for all features were then computed from the fitted distributions.  

The labeling method which used oligo dT for first strand amplification of the RNA 

produces a 3’ biased probes; therefore, any annotation unit with at least two features 



satisfying p < 0.005 was considered circadian regulated. For Fig. 2 the phases for 

genes were computed from the circular averages of the phase in individual exons 

using CIRCSTAT [72]. 
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Figure 1 - The Arabidopsis tiling arrays portray several interesting classes of 

circadian behavior in the genome.   

Each symbol is a feature on the tilling array showing location in the genome (x-axis) and significance 
of the spectral analysis (y-axis) for (A) LUX ARRHYTHMO (B) CIRCADIAN CLOCK ASSOCIATED1, 
(C) LATE ELONGATED HYPOCOTYL, and (D) EARLY FLOWERING3.  The top half of each panel 
displays the Watson strand and the bottom half the Crick strand.  Individual features that exceed the 
FDR 5% p-value threshold (-) are considered to have a circadian rhythm. 

Figure 2 - The Arabidopsis tiling arrays portray several interesting classes of 

circadian behavior in the genome.   

Each symbol is a feature on the tilling array showing location in the genome (x-axis) and significance 
of the spectral analysis (y-axis) for (A) EARLY FLOWERING4 (B) TIMING OF CAB2 EXPRESSION1, 
(C) PSEUDO RESPONSE REGULATOR5, and (D) PSEUDO RESPONSE REGULATOR3.  The top 
half of each panel displays the Watson strand and the bottom half the Crick strand.  Individual features 
that exceed the FDR 5% p-value threshold (-) are considered to have a circadian rhythm. 

Figure 3 - The Arabidopsis tiling arrays portray several interesting classes of 

circadian behavior in the genome.   

Each symbol is a feature on the tilling array showing location in the genome (x-axis) and significance 
of the spectral analysis (y-axis) for (A) PSEUDO RESPONSE REGULATOR7 (B) PSEUDO 

RESPONSE REGULATOR9, (C) LOV KELCH PROTEIN2, and (D) ZEITLUPE.  The top half of each 
panel displays the Watson strand and the bottom half the Crick strand.  Individual features that exceed 
the FDR 5% p-value threshold (-) are considered to have a circadian rhythm. 

Figure 4 - The Arabidopsis tiling arrays portray several interesting classes of 

circadian behavior in the genome.   

Each symbol is a feature on the tilling array showing location in the genome (x-axis) and significance 
of the spectral analysis (y-axis) for (A) FLAVIN-BINDING KELCH DOMAIN F BOX PROTEIN1 (B) 
GIGANTEA, (C) TIME FOR COFFEE, and (D) CONSTANS LIKE2.  The top half of each panel 
displays the Watson strand and the bottom half the Crick strand.  Individual features that exceed the 
FDR 5% p-value threshold (-) are considered to have a circadian rhythm. 

Figure 5 - The Arabidopsis tiling arrays portray several interesting classes of 

circadian behavior in the genome.   

Each symbol is a feature on the tilling array showing location in the genome (x-axis) and significance 
of the spectral analysis (y-axis) for (A) PHOSPHATE STARVATION RESPONSE1 (B) MIR167, (C) 
TRANS-ACTING siRNA3, and (D) transfrag-5-6839029.  The top half of each panel displays the 
Watson strand and the bottom half the Crick strand.  Individual features that exceed the FDR 5% p-
value threshold (-) are considered to have a circadian rhythm. 



Figure 6 - Different types of transcripts and transcription units have variable 

phase distributions across the day as well as within a locus. 

(A) Relative phase frequency distribution of cycling sense and antisense transcript phase.  (B) Scatter 
plot of the expression phases of loci with both sense and antisense strand cycling transcripts. (C) 
Relative phase frequency distribution of cycling sense strand and antisense strand introns and 
intergenic transcript phase. (D) Scatter plot of the expression phases of transcripts and their cycling 
introns. 
 



 

Table 1.  Arabidopsis genome and AtTILE1 array annotation data.  Annotation 

units receiving consideration had at least two unique corresponding array 

features.  Values in parenthesis are the number of transcripts with a single 

corresponding feature. 

Annotation TAIR7* AtTILE1 CCGs**

Protein coding 27,029 25,677 6,269

pseudogenes or TE 3,889 2,863 81

Non-coding RNAs 1,123  

   

Micro RNA 114 62(30) 6

Small nucleolar RNA 71 17(29) 1

Small nuclear RNA 13 0 nd

Pre-transfer RNA 631 2(129) 0

Ribosomal RNA 4 0 nd

Other 221 121(29) 15

   

Total 32,041  6.372

 
*The Arabidopsis Information Resource (TAIR) version 7 genome annotation [30]. 
**Circadian clock regulated genes 
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